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The data covering Mayo Daga and Gashaka areas of Taraba State has been interpreted by applying 
source parameter imaging (SPI) and forward and inverse modeling methods. From the quantitative 
method of interpretation, it was found out that the magnetic intensity within the study area ranges from 
-129.9 to 186.6 nT in which the area is noticeably marked by both low and high magnetic signatures 
which may be as a result of several factors such as; susceptibility, degree of strike, difference in 
magnetic variation in depth and difference in lithology. From the quantitative interpretation, depth 
estimates obtained when SPI is employed shown minimum to maximum depth to anomalous source 
that ranges from 400.7 to 2119.2 m. Forward and inverse modeling estimated depths for profiles P1, P2, 
P3, and P4 were 2372, 2537, 1621 and 1586 m, respectively, with susceptibility values of 0.0754, 0.0251, 
0.0028, and  0.001 respectively,  suggesting that the bodies causing the anomaly are typical of igneous 
rocks; basalt and olivine, intermediate igneous rock; granites, and rocks mineral (quartz). 
 
Key words: Aeromagnetic data, source parameter imaging (SPI), qualitative and quantitative interpretation 

 
 
INTRODUCTION 
 
Minerals and hydrocarbon play vital roles in the socio-
economic development of a country of which Nigeria is 
not an exception. Aeromagnetic surveys are widely used 
to aid production of geological maps, regional geological 
studies, location and definition of buried metallic objects, 
engineering site investigation, archeo-geophysics and are 
also commonly used for mineral exploration by detecting 
minerals or rocks with unusual magnetic properties which 
reveal themselves by causing anomalies in the magnetic 
field intensity of the earth. Aeromagnetic maps usually 
show changes in the earth’s magnetic field resulting from 
the properties of rock sediments (e.g. magnetic 

susceptibilities). Basic igneous rocks have the highest 
magnetic susceptibility, while acidic igneous rocks have 
intermediate magnetic susceptibility and sedimentary 
rocks have the lowest magnetic (Kearey et al., 2002). 
Some minerals deposits are associated with abundance 
of magnetic minerals, and occasionally the target may 
itself be magnetic (e.g. iron ore deposits), but often the 
elucidation of surface structure of the upper crust is the 
most valuable contribution of the aeromagnetic data 
(Hamza and Garba, 2010). This method plays a 
distinguished role when compared with other geophysical 
methods, it is cheaper, faster and large area of land 
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Figure 1. Map of Nigeria showing the study area. 
Source: Ahmed and Oruonye (2016). 

 
 
 
especially areas of political barrier, economic, social and 
environmentally hazardous can easily be covered. The 
main purpose of this work is to study the magnetic 
anomalies of Mayo Daga and Gashaka areas, by 
interpreting qualitatively and quantitatively the 
aeromagnetic anomaly of the areas. The purposes are; to 
estimate the basement depth, to determine the magnetic 
susceptibility and type of mineralization prevalent in the 
area. 
 
 
Location and geology of the study area 
 
The study area is located in Mambilla Plateau, Sardauna  

Local Government Area of Taraba State. It is located 
between latitude 5°30' to 7°18' and longitude 10°18' to 
11°37' having a total land mass of 3,765.2 km

2
 and forms 

the southernmost tip of east of northern part of Nigeria 
(Tukur et al., 2005). This plateau is Cameroon-locked in 
the southern, eastern and western part as shown in 
Figure 1 (Frantz, 1981). 

According to Mubi and Tukur (2005), the basement 
complex rocks underlay more than two-third of the 
plateau and dates back to the Precambrian to early 
Paleozoic era. Meanwhile, according to Jeje (1983), the 
remaining part of the plateau is made up of volcanic 
rocks of the upper Cenozoic to tertiary and quaternary 
ages.  These  rocks  found   within   the   plateau   are   of  



 
 
 
 
volcanic origin, extended from tectonic lines, fissures, etc. 
These volcanic rocks comprises olivine basalt, basalts 
suite and trachyte basalt which were found to contain 
mixtures of amphiboles, pyroxenes with some other free 
minerals of quartz (Mould, 1960). The tertiary basalts are 
found in the Mambilla Plateau mostly formed by trachytic 
lavas and extensive basalts (Dupreez and Barber, 1995). 
 
 
DATA SOURCE AND METHODOLOGY 
 
The data covering the study area was obtained from Nigeria 
Geological Survey Agency (NGSA). The company, FURGRO 
Airborne Surveys in collaboration with Federal Government of 
Nigeria and World Bank carried out the acquisition and processing 
of data with a terrain clearance of 100 m, altitude of 80 m, 100 m 
flight line spacing and 500 m tie line spacing. The data obtained 
from NGSA is in digitized form, XYZ format. 

The first stage of interpretation is gridding; it is a process of 
interpolating data unto an equally spaced grid of cells in a specified 
coordinate system. Because the XYZ data were collected over 
widely separated parallel lines which may have resulted in some 
points along the survey not sampled, it is important that we 
represent the sampled data by determining the values at points 
equally spaced far apart at the nodes of a grid. 

To produce the grids, “minimum curvature” method was used 
(Briggs, 1974). This method, also called the random gridding 
method, fit a minimum curvature surface to data points. The method 
was used because the data were sparely sampled over wide area 
and continuous between data points. The RANGRID GX of the 
Oasis Montaj software was used to achieve this. Here, a grid size of 
300 m was used to avoid over or under sampling based on the 
sampling distance of the data. 

The quantitative interpretation of the aeromagnetic data of the 
study area was carried out by inspecting the TMI gridded map. This 
map is in colour aggregate, and the general purpose is to gain 
some preliminary information of source of anomalies (Obiora et al., 
2016). Oasis Montaj software was employed in producing the total 
intensity (TMI) map. From the map, one can talk of certain features 
about the magnetic intensity and the factors (such as susceptibility, 
depth to the magnetic bodies, nature of the bodies, etc) responsible 
for the change in magnetic signatures. 

The regional anomaly was separated from the residual anomaly 
by applying first order polynomial which was fitted by least square 
method to the data. Different orders of polynomial were tried and it 
was found that the first order polynomial fitting was the best for our 
data as it reflected the geological information of the area. The 
equation used to generate the algorithm for removal of regional 
data according to Ugwu et al. (2013) is given as: 
 
                                                                       (1) 

 
where   is the regional field,               are the X and Y 
coordinates of the geographical centre of the dataset respectively. 
And       and    are the regional polynomial coefficients. 

Quantitative interpretation of aeromagnetic data involves making 
numerical estimates of dimensions and depth of the anomalies and 
often takes the form of sources’ modelling theoretically replicating 
the recorded anomalies during the survey. In order to see whether 
the earth model is consistent with what has been observed, that is, 
developing a model that is suitable in terms of physical 
approximation to the unknown geology, conceptual models of the 
subsurface are created and its anomalies calculated. Quantitatively, 
forward and inverse modelling and source parameter imaging (SPI) 
was employed in this research work. 

Forward modelling involves comparing of the calculated field with  
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observed data, in which the models are adjusted to improve the 
fitting of the calculated and observed data. In comparing the 
calculated field of a hypothetical source with that of the observed 
data, the model is adjusted in order to improve the fit for a 
subsequent comparison. This technique makes use of trial and 
error approach to estimate the distribution of magnetization within 
the source or geometry of the source. The model may be two- or 
three- dimensional. In inverse modelling method, some source 
parameters are determined directly from the measured data which 
is an opposition to the trial and error or indirect determination. It is 
customary in this method to constrain some parameters of the 
source in the way, keeping in mind that every anomaly has an 
infinite number of permissible sources bringing about infinite 
number of solutions (Obiora et al., 2016). 

The inversion of magnetic data may involve one of the following 
three approaches; Calculation of depth to source or depth to bottom 
of source, calculation of magnetic distribution given the geometry of 
the source and calculation of source geometry given the distribution 
of magnetization. 

Oasis Montaj containing the Potent software was used in the 
modelling and inversion of the anomalies in this research work. 
Potent software is a program used for the modelling of the 
gravitational and magnetic effects of surface and is well suited for 
modelling ore body in detail for mineral exploration and providing a 
highly 3-D interactive environment among other applications. In 
Potent, the main concept includes; calculation, observation, 
inversion, model and visualisation and the model consist of an 
assemblage of simple geometrical bodies. Using Potent, the 
following geometrical bodies can be created; sphere, rectangular 
prism, cylinder, dyke, lens, slab, ellipsoid and polygonal prism. By 
trial and error approach, these bodies were attempted in modelling 
the observed data in order to obtain the best fit model. The 
observed data were best modelled by sphere, dyke, slab and 
rectangular prism. In trying to model the observed data of the study 
area, Potent assigns the body default parameters (physical 
properties, shapes, position). The body created is modelled by 
varying any of the parameters of the body. In interpreting the 
observed data, the first step was to take profiles on the field image. 
In view of this, seven profiles (P1, P2, P3, P4, P5, P6 and P7) were 
taken at different parts of the field image. The second quantitative 
method employed was SPI. Estimation of source parameters can 
be performed on gridded aeromagnetic data. This has two 
advantages; 1) it eliminates errors caused by the lines of survey 
that are not perpendicularly oriented to the strike and secondly, it 
has no dependency on an operator size or user selected window 
other techniques like Euler methods and Naudy (1970) requires.  
Furthermore, output quantities grids can be generated and 
subsequently, image can be processed to enhance detail of 
structural information that otherwise may not be evident (Abbas and 
Mallam, 2013). 

This SPI method utilizes the relationship between the local wave 
number (k) and the source depth of the observed field, for which 
calculation of any point within a grid of data through vertical and 
horizontal gradients can be carried out (Thurston and Smith, 1997). 
According to Thurston and Smith (1997), the original SPI works only 
for two models: a sloping contact and a dipping thin dike. The 
maxima of the local wave number (k) is located above isolated 
contacts and estimate of depths can be made without assumptions 
about the thickness of the source of bodies. Using SPI method, 
grids solutions show the edge location, susceptibility contrast, dips 
and depths. This method requires first and second order derivatives 
thus making it susceptible to both interference effects and noise in 
the data (Abbas and Mallam, 2013).   

The basics of this method, is that for vertical contacts, the peaks 
of the k defines the inverse of the depth. Given as;  
 

Depth  = 
 

    
 = 

 

 √                              
                                    (2) 



36          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 2. Total magnetic intensity map of the study area. 

 
 
 
Where the tilt is given as 
 

Tilt = arctan(
     

 √                     
)                                                  (3) 

 

Tilt = 
     

     
                                                                                     (4) 

 
HGRAD =horizontal gradient, T = total magnetic intensity (TMI). 
 
The SPI method helps in calculating the parameters of source from 
gridded magnetic data. This method assumes either a 2D dipping 
thin-sheet model or a 2D slopping contact that is based on the 
complex analytical signal. The solution grids show the dips, depth, 
susceptibility contrast and the edge location. The depth estimate is 
not dependent on magnetic declination, inclination, dip, strike or 
any remanent magnetization. Processing of the SPI image grids 
provides and enhances maps that facilitate interpretation by non-
specialists (Ojoh, 1992). 

 
 
RESULTS PRESENTATION AND DISCUSSION 

 
Interpreting the data quantitatively, the data  was  gridded  

to produce the total magnetic intensity (TMI) map of the 
study area which is in colour aggregate (Figure 2). From 
the TMI map, the magnetic intensity varies between a 
minimum value of -129.9 nT to a maximum value of 186.6 
nT and is marked by both high and low magnetic 
signatures. These variations may be due to several 
factors such as; difference in lithology, magnetic 
susceptibility, variation in degree of strike, depth and 
difference in lithology. In the northern and southern part 
of the study area, orientation of the contours is closely 
spaced. This suggests that local fracture zones or faults 
may possibly pass via these areas. The elliptically closed 
contours in the study area equally suggests the presence 
of magnetic bodies. Most of the anomalous features are 
trending in the East-western direction. The regional map 
was separated from the TMI grid to obtain the residual as 
shown in Figure 3, and ranges from -145.1 to 129.1 with 
variations in colour as indicated on the legend bar. 

In computing the SPI depth, Oasis Montaj software and 
the generated SPI grid image and legend are employed. 
Figure 4 shows different colours which is an indication  of  
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Figure 3. Residual map of the area. 

 
 
 

 
 

Figure 4. 2-D source parameter imaging (SPI) grid and legends of the study area. 
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Figure 5. 3-D source parameter imaging (SPI) grid and legends of the study. 

 
 
 
varying magnetic susceptibility contrast within the study 
area and could equally portray the basement surface 
undulations. Oasis Montaj software was used in 
computing the SPI image and depth. The generated SPI 
grid image and SPI legends (Figure 4) show varied 
colours supposedly indicating different magnetic 
susceptibility contrasts within the study area, and could 
also portray the undulations in the basement surface.  
The negative sign on the legend signifies depth below the 
subsurface. The blue colour on the map as indicated by 
the legend shows areas of deep lying or thicker 
sediments. The pink, purple yellow and orange colours as 
indicated by the legend show areas of near surface or 
shallow sediments. The depth to the magnetic source 
ranges from 400.7 to 2119.2 m as shown in Figure 4. The 
SPI 3-D view (Figure 5) of the study area in different tilt 
positions was also shown which showed two main 
magnetic anomaly source depths indicated by the long 
spikes (blue colour) representing area having deep lying 
magnetic bodies hence, with thicker sedimentary cover; 
and short spikes (light green and orange colours) 
representing areas of shallow sediment. 

To interpret the observed data, four different profiles 
were taken at different points of the field image. Figure 6 
shows the four profiles taken on residual magnetic map 
of the area of study and the subsets are shown in Figures 
7 to 10. 

Figures 7 to 10 shows the model profiles of the study 
area. In the result, the red curves represents the 

calculated field while the blue colour curves represents 
the observed field. The shape, physical properties and 
position were adjusted during the forward modelling 
session in order to obtain a good correlation between the 
observed and calculated field. Potent was used to 
calculate the field at the actual observation points (the 
points where the observed field is known). The field from 
the model was automatically calculated in response to 
the changes made to the model. The observed values 
are shown as an image and as a single E-W and N-S 
profile. Their fit is measured by their visible superposition 
and the root mean square (RMS) values. The root mean 
square (RMS) difference between the calculated and 
observed values was minimized by the inversion 
algorithm. At the end of each inversion exercise, the RMS 
value was displayed. The RMS value of less than twenty-
one (21) was set as a standard for the inversion result as 
the fit between the observed and calculated field; 
thereafter, the RMS value was displayed at the end of 
each inversion exercise. As the fit between observed and 
calculated field continues to improve, the value of RMS 
continue decreasing until a reasonable inversion result 
was achieved. 

The sub profiles in each model show the variations of 
the field values with distance at the area or points 
modelled. Profiles P1 and P2 taken around north-western 
and north-eastern parts of the study area were modeled 
by cylinder shapes emplaced at depths of 2372 and 2537 
m respectively (Figures 8 and 9). The bodies have
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Figure 6. Residual magnetic contour grid map showing four profiles. 

 
 
 

 
 

Figure 7. Model (Cylinder) result of profile 1. Figure 7: Model (Cylinder) result of profile 1. 
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Figure 8. Model (Cylinder) result of profile 2. 

 
 
 

 
 

Figure 9. Model (Ellipsoid) result of profile 3. 
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Figure 10. Model (Lens) result of profile 4. 

 
 
 

Table 1. Summary of modeling results. 
 

Profile X(m) Y(m) 
Depth 

(m) 
Types of 

body 
Dip 

(degree) 

Plunge 

(degree) 

Strike 

(degree) 

K 
value 

Possible cause of 
anomaly 

1 771366 801407 -2372 Cylinder 158.0 -73.7 -85.4 0.0754 Basalt 

2 745694 822183 -2537 Cylinder -76.7 -3.0 1.1 0.0251 Olivine 

3 744179 793741 -1621 Ellipsoid -15.0 93.6 -70.4 0.0028 Granite 

4 724532 776520 -1586 Lens -2.6 97.7 -86.9 0.001 Qaurtz 

 
 
 
magnetic susceptibilities of 0.0754 and 0.0251 
respectively suggesting that the bodies causing the 
anomaly are typical of igneous rocks; basalt and olivine 
(Telford et al., 1990). 

Profile P3 taken in the south eastern part was modeled 
by Ellipsoid shape emplaced at depth of 1621 m with 
susceptibility value of 0.0028 (Figure 10), suggesting that 
the bodies causing the anomaly are typical of 
intermediate igneous rock; granites (Telford et al., 1990). 
The Profile P4 taken in the south western part of the 
study area was modeled with Lens shape emplaced at 
depth of 1586 m with magnetic susceptibility value of 

0.001 (Figure 11), revealing rocks mineral (quartz) 
(Telford et al., 1990). The blue colour in the modeling 
map (Figure 7) cannot be modeled. The reason could be 
as a result of very low total magnetic intensity in the area. 
Table 1 shows the summary of the modelling result. 
 
 
Conclusion 
 
The magnetic anomalies of Gashaka and Mayo Daga 
areas were studied by employing qualitative and 
quantitative  interpretation  of  aeromagnetic  data  of  the  



42          Int. J. Phys. Sci. 
 
 
 
area. SPI and forward and inverse modeling methods 
were used as part of quantitative interpretation. From the 
interpretation method used, the maximum depths 
obtained from each method were similar and are 
approximately 2.3 km each. These three depths obtained 
from SPI, Euler as well as forward and inverse modeling, 
are good for hydrocarbon accumulation in the study area, 
and agrees with the assertion of Wright et al. (1985) that 
the minimum thickness of the sediment required for the 
commencement of oil formation from marine organic 
remains would be 2300 m (2.3 km), if other factors are 
satisfactory. 

Through the results from the qualitative and 
quantitative interpretation obtained from this study, this 
work has shown some similarities in agreement with 
those of other researchers (Chinwuko et al., 2013; Wright 
et al., 1985). 

However, this present work could be more reliable in 
terms of terrain clearance, line spacing and improvement 
in technology. The aeromagnetic study of the area has 
helped to delineate the geological structures of Gashaka 
and Mayo Daga areas which are of great benefits to the 
solid mineral sector of Nigeria economy. 
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This paper proposes an effective improvement of the homotopy perturbation method (HPM) by using 
Jacobi and He's polynomials to solve some nonlinear ordinary differential equations. With this method, 
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INTRODUCTION 
 
In recent years, the subject of differential calculus 
received attention in regards to effective numerical 
methods for solving linear and nonlinear differential 
equations. Examples of these methods are the Adomian 
decomposition method (ADM) (Wazwaz et al., 2015; 
Hosseinzadeh et al., 2017), the variational iteration 
method (Akter and Chowdhury, 2017; Wazwaz, 2015; 
Glowinski, 2015; Ghorbani and Bakherad, 2017), the 
pseudospectral method (Bhrawy et al., 2015; Wei et al., 
2017; Borluk and Muslu, 2015) and the reproducing 
kernel Hilbert space method (Arqub et al., 2016). 

In 1999, He (1999) proposed the HPM which combines 
the standard homotopy in topology and perturbation 
techniques. The HPM is a powerful and effective tool for 
solving a wide range of problems that arise in various 
fields. With this method, numerical solutions are 

expressed as sums of infinite series. The sums converge 
rapidly to find solutions. 

The HPM can be applied to integro-differential equation 
(Elbeleze et al., 2016), linear and nonlinear Newell-
Whitehead-Segel equations (Nourazar et al., 2017), 
nonlinear optimal control problems (Jafari et al., 2016), 
integral equations (Elzaki and Alamri, 2016; Hasan and 
Matin, 2017), nonlinear wave-like equations with variable 
coefficients (Gupta et al., 2013), boundary value 
problems (Opanuga et al., 2017), the quadratic Riccati 
differential equation (Aminikhah and Hemmatnezhad, 
2010), Boussinesq-like equations (Fernández, 2014) and 
others (Sakar et al., 2016; Soori et al., 2015; Qureshi et 
al., 2017; Zhang et al., 2014; Najafi and Edalatpanah, 
2014; Roy et al., 2015; Abou-Zeid, 2016). 

In an overview of approximations of  nonlinear  ordinary  
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differential equations, adomian decomposition method 
with orthogonal polynomials was proposed as a method 
for solving nonlinear problems (Liu, 2009). Chun (2010) 
proposed an efficient modification of the HPM that used 
Chebyshev's and He's polynomials to solve nonlinear 
differential equations. Behrooz and Ebadi (2011) further 
developed the HPM using Legendre polynomials. 
Recently, Novin and Dastjerd (2015) improved the 
adomian decomposition method to obtain solutions for 
the Duffing equation. 

This article applies the HPM to the shifted Jacobi 
polynomials of the right-side function      to solve 
nonlinear differential equations. The advantage of this 
approach is that such polynomials are simple and do not 
require small parameters. Moreover, with a few iterations 
one can find accurate solutions. To the best of the 
authors' knowledge, this approach was not employed to 
solve linear and nonlinear differential equations in the 
past. 

This manuscript is arranged as follows: First, various 
properties of shifted Jacobi polynomials are presented, 
followed by a discussion of He's HPM. Thereafter, the 
proposed HPM is presented along with solutions to three 
numerical examples and with comparisons of the 
solutions and results found with other methods; therein, 
the validity and accuracy of the proposed method is 
considered. Additionally, the results of the numerical 
simulation using Maple 17 are given, and the study is 
concluded. 
 
 
PROPERTIES OF SHIFTED JACOBI POLYNOMIALS 
 
The well-known standard Jacobi polynomials, 

  
     

                 are defined on the interval 

      . The standard Jacobi polynomials of degree 

     
     

                satisfy the following Rodrigue's 

formula: 
 

 , ( 1)
( ) (1 ) (1  )  (1 ) (1  ) .
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k k
k k

k k k

d
P x x x x x

k dx

        
       (1) 

 
For    , one recovers the ultraspherical polynomials 

(symmetric Jacobi polynomials) and for      
 

 
   

    is the Chebyshev polynomial of the first and 
second kinds and Legendre polynomials respectively; 
and for the non-symmetric Jacobi polynomials, the two 

important special cases       
 

 
 (Chebyshev 

polynomials of the third and fourth kinds) are also 
recovered. 

The Jacobi polynomials (Bhrawy et al., 2016) satisfy 
the orthogonality relation. 
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In order to use these polynomials on the interval      , 
we define the so-called shifted Jacobi polynomials by 

introducing the change of variable   
  

 
     Let the 

shifted Jacobi polynomials   
     

(
  

 
  ) be denoted by 

( , )

, ( ).L iP x 
 Then 

( , )

, ( )L iP x 
can be obtained with the aid 

of the following recurrence formula: 
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The analytic form of the shifted Jacobi polynomials

( , )

, ( )L iP x 
of degree   is given by 
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and the orthogonality condition is 
 

( , ) ( , ) ( , ) ( , )

, , , ,
0

( ) ( ) ( )
L

L j L k L k jkP x P x x dx                (5) 

 

where ( , )( ) ( )L x x L x       and 

1
( , )

,

( 1) ( 1)
.

(2 1) ! ( 1)
L k

L k k

k k k

 
   

   

       


      
 

 

A function     , square integrable in        may be 
expressed in terms of shifted Jacobi polynomials as 
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where the coefficients    are given by 
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HE'S HPM 
 
Here, we will present HPM used by He (1999, 2006) to 
solve nonlinear differential equations that take the 
following form 
 

( ) ( ) ( ) ( ), ,L u R u N u f x x               (7) 

 
with boundary conditions 
 

0, ,
u

B u x
x

 
  

 
                                     (8) 

 
where L is a linear operator of highest order, R is a linear 

operator of lower order than     is a nonlinear operator, 

  is a boundary operator,      is the source term and   is 
the boundary of the domain  . He (1999) defines the 

homotopy technique as                  , which 
satisfies 
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where         is an embedding parameter and    is an 
initial estimated approximation of Equation 7 which 
satisfies the boundary conditions. Obviously, we have 
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The expansion of   from 0 to 1 is the same as that for 

       from           to                    . In 
topology, this is called deformation and           , 

                       are called homotopic. Using 

the parameter  , we expand the solution of Equation 9 in 
the following form: 
 

2 3

0 1 2 3 .....p p p                               (12) 

 
When     , Equation 12 becomes the approximate 
solution of Equation 7, that is, 
 

0 1 2 3
1

lim .....
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                            (13) 

 
 
METHODOLOGY OF HPM BASED ON SHIFTED JACOBI 
POLYNOMIALS 

 
When implementing the previous HPM on some problems we find 
that the source term      is not easy to integrate. So, in this paper, 
for an arbitrary natural number        can be expressed in the  
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shifted Jacobi series 
 

                       (14) 
 
To deal with the nonlinear term     , we will use He's polynomials 
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and satisfy the following relation 
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Substituting Equations 12, 14 and 16 into 10, and equating 
coefficients of like powers of  , we get 
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and so on. By solving the above set equations with suitable initial 
conditions,               can be determined and the series 
solution (12) will be entirely determined. The  -term approximation 
solution of Equation 7 can be considered as follows 
 

1

0

.
N

N k
k

U 




                                                                         (18) 

 
 
NUMERICAL SIMULATION AND COMPARISONS 
 

Here, several numerical examples to demonstrate the 
high accuracy and applicability of the proposed methods 
for solving nonlinear ordinary differential equations are 
presented. We also compare the results given from our 
method and those reported in the literature. The 
comparisons reveal that our methods are very effective 
and convenient. 
 
 
Example 1 
 

We consider the following equation (Liu, 2009; Behrooz 
and Ebadi, 2011) 
 

2 22 3 2 2 3(2 6 ) , 0 1,x xu xu x u x e x e x           (19) 

 

(0) 1, (0) 0,u u                                                     (20) 

 

with exact solution 
2

( ) .xu x e  

 

    ≈   𝐽 ,     =  𝑎   , 
  ,  

( )

 

 =0
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Figure 1. AEs of HPM by Chebyshev (EC) and Taylor (ET) polynomials at 
    for Example 1. 
Source: Behrooz and Ebadi (2011). 

 
 
 
In an operator form, Equation 19 can be written as: 
 

( ) ( ) ( ) ( ),L u R u N u f x                                      (21) 

 

where    
 

           
 

  
             and   

                
       

   
 
Behrooz and Ebadi (2011) introduced this problem and 
presented Figure 1 to show the absolute errors (AEs) of 
HPM with Chebyshev and Taylor polynomials at    . 
Moreover, Liu (2009) applied the ADM with Legendre, 
Chebyshev and Taylor polynomials to this problem and 
presented the absolute errors (AEs) in Figures 2, 3 and 4. 
Now, we apply our method for this problem. 

The homotopy equation is 
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According to Equation 15, He's polynomials are found to 
be: 
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(24) 

 
Substituting relations Equation 24 in Equation 16, gives 
the following relation 
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Now, if     
1

20
and        the expansions of      

in shifted Jacobi polynomials are obtained by 
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Substituting Equation 25 and Equation 23 into the 
homotopy (22) and equating the terms with identical 
powers of  , gives: 
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Figure 2. AEs of ADM by Taylor polynomials at     for Example 1. 
Source: Behrooz and Ebadi (2011). 

 
 
 

 
 

Figure 3. AEs of ADM by Chebyshev polynomials at     for Example 1. 
Source: Liu (2009). 
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Figure 4. AEs of ADM by Legendre polynomials at     for Example 1. 
Source: Liu (2009). 
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By substituting Equation 26 in           at Equation 27, 

and solving the above equations by the help of Maple, we 
obtain 
 

  2 3 4

7 46 9 47 9 48

12 50

 1 1.037826715 0.6364942917 4.382192498
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(28) 

 
The absolute error of HPM with shifted Jacobi 
polynomials at      is plotted in Figure 5. 

The accuracy of this method is validated by comparing 
to the exact     . By comparing Figures 1 to 5, it is found 
that the absolute errors (AEs) generated using our 
method are smaller than the errors caused by HPM with 
Chebyshev (EC) and Taylor (ET) polynomials and by 
ADM with Legendre, Chebyshev and Taylor polynomials. 
This means that the method here is more accurate than 
previous methods. 
 
 

Example 2 
 

We consider the following problem (Behrooz and Ebadi, 
2011): 
 

2 2 2 2sin(2 ) 4 sin( ) 2 cos( ),u uu x x x x x        (29) 

 

(0) 0, (0) 0, 0 1,u u x                          (30) 

 

with exact solution             . In an operator form, 
Equation 29 can be written as: 
 

( ) ( ) ( ),L u N u f x                                                  (31) 

 

where   
 

              and                

                    . 
 

The homotopy equation is: 
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Figure 5. AEs of HPM by shifted Jacobi polynomials at       
 

  
 and      for 

Example 1. 

 
 
 

0 0
( ) ( ) [ ( ) ( )] 0.L u p L u p N f x               (32) 

 
He's polynomials for the nonlinear term          are 
found to be 
 

0 0 0

0 1 0 1 1 0

0 1 2 0 2 1 1 2 0

0 1 2 3 0 3 1 2 2 1 3 0

0 1 2 3 4 0 4 1 3 2 2 3 1 4 0

( ) ,
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( , , ) ,

( , , , ) ,

( , , , , ) ,

N

N

N

N

N

  

    

       

          

             



  

    

      

        

  

 (33) 

 

Now, if     
 

  
 and      the expansions of      in 

shifted Jacobi polynomials are obtained by 

 
3 2 2 3

,10

4 5 6 7

8

(

9 10

)
1.999997823  0.26993648 10 0.8403435 10  2.112845335

5.80766750  3.416658954 8.977727745  13.49519614

14.20329364  8.284749236 1.68860433

( )

2 .

J
f x x x

x x x x

x x

x

x

      

   

  

(34) 

 
Substituting Equation 23 and using Equation 16 with 
relations  

33 into the homotopy Equation 32 and equating the terms 
with identical powers of  , gives 
 

00

0 0

1 0 0 ( .10)1

1 1

2 0 1 0 12

2 2

3 1 1 0 2 0 23

3 3

10 1 8 2 7 3 610

2 0,
:

(0) 0, (0) 0,

2 ( ) 0,
:

(0) 0, (0) 0,

0,
:

(0) 0, (0) 0,

0,
:

(0) 0, (0) 0,

:

J

p

f x
p

p

p

p



 

  

 

    

 

     

 

     

 


 

    


 

    


 

      


 

      
4 5 4 5 3 6 2 7 1 8 0 9 0 9

10 10

,

(0) 0, (0) 0.

            

 

           


    

(35) 

 

By substituting Equation 34 in            at Equation 35, and 

solving the above equations by the help of Maple, we obtain 
 

  2 4 3 3 4

2 5 13 64 14 65

15 66 17 67

0.9999989115 0.4498941333 10    0.7002862500 10

 0.5642484450 10  2.229469520 10 2.357695514 10

1.572944876 10    4.949801810 10 .

u x x x x

x x x

x x

 

  

 

    

      

   

(36) 
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Figure 6. AEs of HPM by shifted Jacobi polynomials at      and        
 

  
 for 

Example 2. 

 
 
 

The absolute errors (AEs) at      
1

20
 and       

are presented in Figure 6 which showed that the results 
of HPM with shifted Jacobi polynomials to be more 
accurate results than the results of HPM with Legendre, 
Chebyshev and Taylor polynomials (Behrooz and Ebadi, 
2011) represented in Figure 7. 
 
 
Example 3 
 
Consider the equation (Behrooz and Ebadi, 2011; Novin 
and Dastjerd, 2015), 
 

   3  3 2 cos sin 2 ,u u u x x                         (37) 

 

(0) 0, (0) 1, 0 1.u u x                          (38) 

 
The exact solution of this problem is            . In an 
operator form, Equation 37 can be written as: 
 

       ,L u R u N u f x                         (39) 

where   
 

                                    

               
The homotopy equation is: 

 

0 0
( ) ( ) [ ( ) ( ) ( )] 0.L u p L u p R N f x             (40) 

 
Similar to the previous two examples, if             
        and    , we get 
 

  5 2 2

,7

3 4 5

6

( )

7

0.5196100000 10  2.000385742 – 0.6852219400 10

2.282885057 0.1876329186 1.396156963

0.4115735108 0.0163048120 .8

J
f x x x

x x x

x x

   

  





  

(41) 

 
The approximate solutions 
 

  5 2 3 3 4

20 47 22 48 24 49

 0.2598050000 10 0.1666023763 0.5703687707 10

4.353096806 10 6.612018552 10 3.742005363 10 .

u x x x x x

x x x

 

  

     

      

(42) 

 
In Table 1, we compare the AEs achieved using our 
method with those obtained using the ADM with 
Legendre and Taylor polynomials (Novin and Dastjerd, 
2015) at    . Figure 8 plot the AEs of the HPM with 
shifted Jacobi polynomials, which show  that  our  method  
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Figure 7. AEs of HPM by Legendre (EL), Chebyshev (EC) and Taylor (ET) 
polynomials for Example 2. 
Source: Behrooz and Ebadi (2011). 

 
 
 

Table 1. Comparison of our method with the ADM with Legendre and Taylor polynomials (Novin and Dastjerd, 2015) at         
         and      for Example 3. 
 

x Our method ADM with Legendre polynomials ADM with Taylor polynomials 

0.2 1.9 ×10
−9

 2.012 ×10
−9

 5 ×10−
12

 

0.4 1 ×10
−10

 1.16 ×10
−10

 1.0224 ×10
−8

 

0.6 6 ×10
−10

 1.951 ×10
−9

 8.70197 ×10
−7

 

0.8 2.7 ×10
−9

 4.3981 ×10
−7

 1.9931859 ×10
−5

 

1 2.50 ×10
−8

 1.36581 ×10
−6

 2.32196948 ×10
−4

 

 
 
 
is more accurate than HPM with Chebyshev and Taylor 
polynomials (Behrooz and Ebadi, 2011) shown in Figure 
9. 

From Table 1, Figures 8 and 9 listed above, it is shown 
that the method here is surpassed than ADM with 
Legendre and Taylor polynomials introduced by Novin 
and Dastjerd (2015) and the HPM with Chebyshev and 
Taylor polynomials introduced by Behrooz and Ebadi 
(2011). 
 
 
Conclusions 
 
In   this   work,    a    generalization    to    the    homotopy  

perturbation algorithm has been proposed to find an 
accurate numerical solution for the nonlinear ordinary 
differential equations. The core of the proposed method 
was the source term that can be expressed in the shifted 
Jacobi series. By comparing the approximate solutions of 
the problems in this research with their exact solutions 
and with the approximate solutions achieved by other 
methods, the validity and accuracy of the scheme of this 
research is confirmed. 
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Figure 8. AEs of HPM by shifted Jacobi polynomials at                  
and      for Example 3. 

 
 
 

 
 

Figure 9. AEs of HPM by Chebyshev (EC) and Taylor (ET) polynomials for 
Example 3. 
Source: Behrooz and Ebadi (2011). 
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Gravity anomalies in parts of the Niger Delta region, Nigeria, were investigated through the 
interpretation of aerogarvity data with the objectives to determine the thickness of the sedimentary 
basin, establish the basement topography, density contrasts and the geological models which will give 
information about variation of geological structures. Four sheets of digital airborne gravity data were 
used for the study.  Source parameter imaging (SPI), Standard Euler deconvolution and forward and 
inverse modeling techniques were employed in quantitative interpretation. The Bouguer anomaly of the 
study area varied from -20.0 to 37.7 mGal, while the residual Bouguer anomaly varied from -19.6 to 25.7 
mGal. The SPI gave depth values ranging from -539.7 to -4276.0 m for shallow and deep lying gravity 
anomalous bodies. The windowed Euler-3D for Bouguer gravity result revealed the depth range of 
1355.5 to -1518.1 m for structural index of one; 2384.5 to -3283.2 m for structural index of two and 
2426.0 to -5011 m for structural index of three. The forward and inverse modeling gave the density 
values for the modeled profiles 1, 2, 3, 4 and 5 as 1.820, 2.410, 0.720, 2.310 and 2.100 gcm

-3
, 

respectively, with their respective depths of 3872, 4228, 4880, 3560 and 2527 m. The results from this 
study have shown that the depth to basement and density contrast have influence on the 
petroleum/hydrocarbon accumulation.  
 
Key words: Aerogravity, basement, density contrast, sedimentary. 

 
 
INTRODUCTION 
 
The gravity survey is a non-destructive geophysical 
technique that measures difference in the earth’s 
gravitational field at specific locations. It could be ground 
gravity survey or airborne (aero) gravity survey. In 
geosciences, the gravity method has been widely used in 
different applications involving engineering exploration, 
regional and large scales study  of  geological  structures, 

where measurements of earth’s gravitational field are 
used to map subsurface variations in density (Biswas and 
Sharma, 2016; Biswas et al., 2014a, b; Mandal et al., 
2015, 2013). The anomalies in the earth’s gravitational 
field results from lateral variations in the density of 
subsurface rocks and the distance from the measuring 
point. Factors like grain  density,  porosity  and  interstitial 
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fluids within materials affect density contrast. Gravity data 
can be used in many ways to solve different exploration 
problems, depending on the geologic setting and rock 
parameters (Ezekiel et al., 2013; Okiwelu et al., 2013; 
Obiora et al., 2016), the data when analyzed provide 
insight to elements of petroleum exploration and 
production (Johnson, 1998; Obiora et al., 2016). The 
density contrasts presented by the juxtaposition of 
sediments with shales make detailed gravity modeling in 
this region a valuable exercise. The aerogravity method 
has found numerous applications in engineering and 
environmental studies including locating voids and karst 
features, buried stream valleys, water table and 
determination of soil layer thickness. The success of the 
gravity method depends on the different earth materials 
having different bulk densities (mass) that produced 
variations in the measured gravitational field. The gravity 
method has good depth penetration compared to ground 
penetration radar, high frequency electromagnetic and 
dc-resistivity techniques and is not affected by high 
conductivity values of near-surface clay rich soils 
(Mickus, 2004). 

The aerogravity data are acquired with sufficient 
resolution which contributes towards resource-scale 
projects which can be used to characterize salt domes for 
petroleum exploration, geothermal energy investigations, 
monitoring of geothermal reservoirs under exploitation, 
inferring location of faults, and permeable areas for 
hydrothermal movement (Adedapo et al., 2014; Agunleti 
and Salua, 2015). There is generally an ambiguity in all 
geophysics data interpretation, this affects all geophysical 
data and the ambiguities that arise from different geologic 
configurations producing similar observed measurements 
(Biswas, 2015, 2016, 2017a, b; Mbah et al., 2017; Biswas 
et al., 2017; Singh and Biswas, 2016; Biswas and 
Sharma, 2015, 2014a, b; Sharma and Biswas, 2013). 
According to Hospers (1965), the gravity field of Niger 
Delta showed negative values of low magnitude covering 
most parts of the Niger Delta and these low values are 
referred to as Niger Delta minimum. Depth to basement 
investigation is necessary in exploration as it gives 
information about where matured hydrocarbons are 
found. The objectives of this study were to determine the 
thickness of the sedimentary basin, establishing the 
basement topography and the geological models to give 
information about the variation of the geological 
structures. 

 
 
Location and geology of the Niger Delta 

 
The study area is located in the Niger Delta region which 
is found in the Gulf of Guinea (Tuttle et al., 1999); it is 
one of the most prolific hydrocarbon basins in the world.  
The towns covered in the study were Olobirin, Degema, 
Patani and Ahoada. Niger Delta has an area of about 
300,000 km

2
, sediment thickness of over  10,000 km  and  
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sediment volume of 500,000 km

3
 (Okiwelu et al., 2013). 

Niger Delta is located between latitudes 3°30' and 
4°30'N, longitude 6°00' and 7°00'E. Niger Delta 
sediments are divided into three distinct units of Eocene 
to Recent ages that form major transgressive and 
regressive cycles. Marine sedimentation started to evolve 
in the early Tertiary times according to Doust and 
Omatsola (1990) and over the years it has prograded a 
distance of more than 250 km from the Benin and 
Calabar flanks to the present delta front, controlled by 
synsedimentary faults, folding and subsidence with 
sediment supply mainly from the Niger, Benue and Cross 
Rivers accumulating up to 12,000 m thickness in some 
regions (Merki, 1972; Evamy et al., 1978). 

The Niger Delta generally displays three vertical 
lithostratigraphic subdivisions: an upper delta top facies; 
a middle delta front lithofacies; and a lower pro-delta 
lithofacies. These lithostratigraphic units correspond, 
respectively with the continental sands of Benin 
Formation (Oligocencene-Recent), the alternating 
sand/shale paralic of Agbada formation (Eocene-Recent) 
and the marine prodeltashales of Akata formation 
(Paleocene-Recent). The sands and sandstones of 
Agbada formation are the main hydrocarbon reservoirs. 
The shape and internal structure of the Niger Delta are 
also controlled by fracture zones along oceanic crust. 
The Niger Delta sits at the southern end of Benue trough, 
corresponding to a failed arm of rift triple junctions 
(Lehner and De Ruiter, 1977). Figure 1 is the map of 
Niger delta region of Nigeria showing the location and 
geology of the study area. 
 
 
MATERIALS AND METHODS 
 
The goal of gravity survey is to locate and describe subsurface 
structures from the gravity effects caused by their anomalous 
densities (Lowrie, 2007; Telford et al., 1990). The variations in 
acceleration due to earth’s gravity are caused by variations in 
subsurface geology. The aerogravity data was acquired by Nigerian 
Geological Survey Agency (NGSA). The materials used for this 
study include four gravity sheets of Olobirin (sheet 327), Degema 
(sheet 328), Patani (sheet 319) and Ahoda (sheet 320). The data 
was then transformed to an equally spaced two dimension (2D) grid 
using the minimum curvature method (Briggs, 1974; Webring, 
1981), which fits a minimum curvature surface to data points. This 
was achieved using the RANGRID GX of the Oasis MontajTM 

software. The gridded data helps in producing the Bouguer gravity 
map. The gridded sheets were digitally merged into a composite 
aerogravity map which preserved the sanctity of the original maps.  

The qualitative interpretation was done to map subsurface 
structures such as intrusives which may be responsible for the 
anomalies. This involves the use of grids on which the anomalous 
values at different stations are plotted and at which contours are 
drawn at suitable intervals. Then, the quantitative interpretation was 
done to have the estimates of depths and dimensions of sources of 
anomalies. The techniques adopted in this study include: source 
parameter imaging (SPI), Euler deconvolution, forward and inverse 
modeling (Biswas et al., 2017; Biswas, 2016, 2015).  

The source parameter imaging is a technique using an extension 
of the complex analytical signal to estimate potential field depths 
(Thurston and Smith, 1997; Nwosu, 2014). This technique is a
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Figure 1. Map showing the location and geology of the study area. 

 
 
 
profile or grid-based method for estimating potential source depths 
and for some source geometries, the dip and density contrast. The 
method utilizes the relationship between source depth and the local 
wave number (K) of the observed field, which can be calculated for 
any point within a grid of data via horizontal and vertical gradients 
(Thurston and Smith, 1997). The SPI method requires first and 
second order derivatives and is thus susceptible to both noise in the 
data and interference effects (Nwosu, 2014). The analytic signal 

( , z) is defined by Nabighian (1972) as: 

 

                                          (1) 

 
where M(x, z) is the magnitude of the anomalous potential field, j is 
the imaginary number, and z and x are Cartesian coordinates for 
the vertical direction and the horizontal direction perpendicular to 
strike, respectively. According to Nabighian (1972), the horizontal 
and vertical derivatives comprising the real and imaginary parts of 
the 2D analytical signal are related: 

 

                             (2) 

 

where  denotes a Hilberts transform pair. The local wavenumber 

K1 is defined by Thurston and Smith (1997) to be: 

 

                            (3) 

 
Thus, the analytic signal could be defined based on second-order 

derivatives, (x, z), where 

                            (4) 

 
This gives rise to a second-order local wave number K2, where 
 

                             (5) 

 
The first- and second-order local wave numbers are used to 
determine the most appropriate model and a depth estimate 
independent of any assumptions about a model (Salako, 2014). 

The Euler Deconvolution produces map that show the locations 
and corresponding depths of the geologic sources observed in a 
two dimensional grid. The standard Euler 3D method is based on 
Euler’s homogeneity equation, an equation that relates the potential 
field and its gradient components to the location of the source, with 

the degree of homogeneity  which may be interpreted as a 

structural index, SI (Thompson, 1982). The SI is an exponential 
factor corresponding to the rate at which the field falls off with 
distance, for a source of a given geometry. The Standard 3D form 
of Euler’s equation (Reid et al., 1990) can be defined as: 

 

  (6) 

 

where x, y, and z are the coordinates of a measuring point; , , 

and  are the coordinates of the source location whose total field 

is detected at x, y, and z; b is a base level; 𝜂 is structural index (SI) 
and T is potential field. The value of the SI depends on the type of 
source body under investigation (Whitehead and Musselman, 

2005). For example 𝜂 = 0 for a horizontal contact with infinite 
dimensions, 𝜂 = 0.5 for a vertical contact, 𝜂 = 1 for top  of  a  vertical  
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Figure 2. Bouguer gravity map of the study area. 

 
 
 
 
dyke or the edge of a sill, 𝜂 = 2 for the centre of a horizontal or 
vertical cylinder and 𝜂 = 3 for the centre of a magnetic sphere or 
dipole (Thompson, 1982; Reid et al., 1990; Moghaddam et al., 
2015).  

In modeling, the PotentQ 3D tool of the Oasis montajTM is used; it 
involves making numerical estimates of the depth and dimensions 
of the sources of anomalies. The forward modeling is a trial and 
error method; in which the shape, position and physical properties 
of the models are adjusted in order to obtain a good fit between the 
calculated field and the observed field data. The inverse modeling 
involves a mathematical process that automatically adjusts the 
model parameters so as to improve the fit between the calculated 
field and the observed field.  

 
 
RESULTS AND DISCUSSION 
 
The result from the interpreted data shows that Bouguer 
anomaly of the study area varies from -20.0 to 37.7 mGal 
(Figure 2). These values indicate the presence of coastal-
oceanic regions where the Bouguer gravity values drops 
to zero as we move close to the coast (Robinson and 
Coruh, 1988). The regions of gravity high correspond to 
region with high density contrast beneath the surface and 
gravity low corresponds to region of low density contrast. 
The residual Bouguer anomaly varies from -19.6l to 25.7 
mGal. The southern part of the study area has high 
density contrast beneath the  subsurface  and  decreases 

towards the northern part (Figure 3). The regional 
Bouguer anomaly varies from 11.7 to 14.4 mGal (Figure 
4).  

Figure 5 is the horizontal derivative computed from the 
residual Bouguer gravity grid using Oasis montaj

TM
 

software. The horizontal derivative map (Figure 5) shows 
more exact location for faults.  

Figure 6 is the aerogravity SPI map showing the 
variation of depths to anomalous gravity bodies 
computed using the first vertical derivatives and 
horizontal gradient. The negative depth values depicts 
the depths of buried gravity bodies, which may be deep 
seated basement rocks or near surface intrusive. The 
pink colour generally indicates areas occupied by shallow 
gravity bodies, while the blue colour depicts areas of 
deep lying gravity bodies. The SPI depth result varies 
from -539.7 m (shallow gravity anomalous bodies) to -
4276.7 m (deep lying gravity anomalous bodies). The 
high depths indicate thick sediment which is suitable for 
hydrocarbon accumulation (Wright et al., 1985, Obiora et 
al., 2016). 

The Euler depths were estimated using vertical 
derivatives in three dimensions (x, y, and z), vertical 
derivatives enhance shallow gravity bodies. Hence, 
depths of shallow gravity anomalies for different structural 
index are displayed by Euler method.  Different  structural  
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Figure 3. Residual gravity map of the study area. 

 
 
 

 
 

Figure 4. Regional gravity intensity map of the study area. 

 
 
 
index numbers were tried on the data but it was found 
that the index number 0, 1 and 2 were the best for the 
data as it reflected the geological information of the area. 
Three  Euler  deconvolution  maps   were   generated   as 

shown in Figure 7a, b and c for the aerogravity data. The 
pink colour indicates shallow gravity bodies, while the 
blue colour indicates deep lying gravity bodies. The Euler 
depth result ranges from  -1518.1  to  1355.5,  -3283.2  to
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Figure 5. Aerogravity horizontal derivative map of the study area. 

 
 
 

 
 

Figure 6. Source parameter image (SPI) map of the study area. 

 
 
 
2384.0 m, and -5011.4 to 2426.0 m for structural index of 
0, 1, and 2, respectively. The results of Euler 3D depths 
are summarized in Table 1.  

Five profiles were taken on the residual Bouguer grid 
(Figure 8) and modeled in order to show the distribution 
of causative bodies within the selected area. Each profile 
produced a degree of strike, dip and plunge where the 
observed values matched well with the calculated values. 
The blue curves represent the observed field values while 

the red curves represent the calculated field values. The 
forward modeling being a trial and error method, the 
shape, position and physical properties of the model were 
adjusted in order to obtain a good correlation between 
the calculated field and the observed field data. Using 
PotentQ 3D tool of the Oasis montaj

TM
 software, the field 

of the model was calculated. The root mean square 
(RMS) difference between the observed and calculated 
field  values  were  attempted  to  be   minimized   by   the
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Figure 7. (a) Aerogravity Euler 3D depth map, SI=0; (b) Aerogravity Euler 3D depth 
map, SI=1; (c): Aerogravity Euler 3D depth map, SI=2. 
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Table 1. Depth estimates for Euler-3D Deconvolution. 
 

Structural index, SI Depth ranges (m) Bouguer gravity data 

0 1355.5 to -1518.1 

1 2384.5 to -3283.2 

2 2426.0 to -5011.4 

 
 
 

 
 

Figure 8. Aerogravity Residual contour map. 

 
 
 
inversion algorithm. At the end of the inversion, the RMS 
value was displayed. The RMS value decreased as the fit 
between the observed and calculated field continues to 
improve, until a reasonable inversion result was 
achieved. Less than 5% of root mean square value was 
set as the error margin. The modeled profiles are shown 
in Figure 9a to e and the results of the forward and 
inverse modeling are summarized in Table 2. The result 
from the forward and inverse modeling analysis of the 
aerogravity data shows that the density values obtained 
from the modeled profiles 1, 2, 3, 4 and 5 are 1.820, 
2.410, 0.720, 2.310 and 2.100 g/cm

3
, respectively, with 

respective depths of 3872, 4228, 4880, 3560 and 2527 
m. These density values indicate the presence of 
minerals like petroleum, clay, gypsum, kaolinite and rock 
bearing minerals like shale, limestone and marble in the 
study area (Thompson and Oldfield, 1986; Telford et al., 
1990; Hunt et al., 1995). The observed depths indicate 
thick    sediments    that    confirms    the    feasibility    for  

hydrocarbon accumulation in the area.  
 
 
Conclusion  
 
Aerogravity data covering Olobirin (sheet 327), Degema 
(sheet 328), Patani (sheet 319) and Ahoda (sheet 320) in 
Niger Delta region of Nigeria were interpreted. Source 
parameter imaging (SPI), Euler deconvolution and 
forward and inverse modeling techniques were employed 
in quantitative interpretation with the aim of determining 
depth/thickness of the sedimentary basin, basement 
topography, density contrasts, and types of mineralization 
prevalent in the area. 

The Bouguer anomaly of the study area varies from -
20.0 to 37.7 mGal while the residual Bouguer anomaly of 
the study area varies from -19.6 to 25.7 mGal. These 
values are indicative of coastal-oceanic regions where 
the Bouguer  gravity  values  drop  to  zero  as  we  move
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Figure 9a. Profile 1 (P1) modeled. 

 
 
 

 
 

Figure 9b. Profile 2 (P2) modeled. 
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Figure 9c. Profile 3 (P3) modeled. 

 
 
 

 
 

Figure 9d. Profile 4 (P4) modeled. 
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Figure 9e. Profile 5 (P5) modeled. 

 
 
 
Table 2. Summary of aerogravity forward and inverse modeling results. 
 

Model Model shape X (m) Y (m) 
Depth to 

anomalous 
body (m) 

Plunge 

(deg) 

Dip 

(deg) 

Strike 

(deg) 

Density 
value 

(g/cm
3
) 

Possible 
cause of 
anomaly 

P6 Cylinder 254843 499251 3872 92.8 116.5 105.4 1.820 Shale 

P7 Ellipsoid 221761 558170 4228 0.7 -13.2 -108.5 2.410 Gypsum 

P8 Cylinder 272770 600733 4880 3.7 -3.3 -102.7 0.720 Petroleum 

P9 Ellipsoid 188999 600383 3560 -179.2 225.3 44.0 2.310 Kaolinite 

P10 Rectangular prism 174818 545318 2527 31.3 60.6 52.1 2.100 Limestone 

 
 
 
close to the coast and also show the heterogeneous 
nature of the study area. The contour maps reveal 
regions with gravity high and low which correspond to 
regions of high and low density contrast, respectively. 
The source parameter image (SPI) grid indicates the 
different density contrast and magnetic susceptibility 
within the area. The SPI depth result for the aerogravity 
data ranges from -539.7 to -4276.7 m. 

The windowed Euler-3D for the Bouguer gravity results 
show that for structural index of one, the depth range is 
between 1355.5 and -1518.1 m; for structural index of 
two, the depth range is between 2384.5 and -3283.2 m, 
while for structural index of three, it is between 2426.0 
and -5011.4 m. The results from the forward and inverse 
modeling analysis of the aerogravity data show that the 
density values obtained from the modeled profiles 6, 7, 8, 

9 and 10 are 1.820, 2.410, 0.720, 2.310 and 2.100 g/cm
3
, 

respectively, with respective depths of 3872, 4228, 4880, 
3560 and 2527 m. The results indicated that the 
estimated sedimentary thickness and variation of the 
geological structures that makes the region is suitable for 
hydrocarbon and other minerals accumulation in the 
study area.  
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